

Session W-13

Windows Server 2008 R2 -Best Practices og Performance Tooling

Brian Lauge Pedersen Technical Solutions Professional - Datacenter blauge@microsoft.com

Microsoft TechNet

Agenda

Overview

- New Hardware Support
- New Performance Features
- Performance Improvements
- Selected Deep Dive
 - What changed?
 - How?
 - Results?
- Questions and Answers

In a Nutshell...

- R2 is more than a "patch" or "service pack"
- The most scalable release of Server
- Performance gains in a number of areas
- New features to address pain points
- Great today, ready for tomorrow

Hardware Inflection Points

Virtualization

Power

New Hardware Support

- CPUs
 - > 64 Logical Processors (LP)
 - Power
 - Improved C State Support
 - Support for Core Parking
- Virtualization
 - Hardware SLAT (EPT/NPT)

Overview New Features – Part 1 of 2

- Sector State S
- > 64LP enlightenments
 Network stack, storage stack, tools
 Cooperative Scheduling
 User Mode Scheduling (UMS)
 NUMA enhancements
 - Topology APIs
 - NUMA-aware RSS

Overview New Features – Part 2 of 2

- Hot Lock "removal"
 - Scheduler Dispatcher
 - Memory Manager PFN
 - Cache Manager VACB
 - Object Type

Improvements - Part 1 of 3

- Virtualization
 - 64 LP!
 - Scalability Improvements
 - NUMA Scheduling
 - Dynamic VHDs
- Boot Optimizations
 - Device initialization parallelization

Power

- Processor Power Management Policies
- Timer Coalescing and Tick Skipping Windows Server 2008 R2

Improvements - Part 2 of 3

- Minimization Work
 - Re-factored DLLs
 - Trigger start of Drivers and Services
 - Memory, disk and CPU optimizations

File Server

- Improvements in the WAN scenario by reducing network round trips
- Scalability improvements

Improvements - Part 3 of 3

- Storage
 - Clustered Shared Volumes (Centipede)
 - Native VHD
 - NUMA I/O
- Terminal Server
 - Dynamic Fair Share Scheduling (DFSS)
 - Video Performance
 - WAN bandwidth reductions

Agenda

Overview

- New Hardware Support
- New Performance Features
- Performance Improvements
- Selected Deep Dive
 - What changed?
 - How?
 - Results?
- Questions and Answers

Details - > 64 LP

- What changed?
 R2 supports 256 LPs
- How?
 - Groups
 - Static set of 1 to 64 LPs
 - Determined at boot time
 - Minimal number of groups
 - LP spatial locality important

Details – > 64 LPs An example - 2 Group, 128LPs

Details - > 64 LPs

Results?

- Processes assigned round-robin to groups
 - Can be overridden to inherit parent process group
- Threads inherit group affinity
 - Thread can be affinitized to only a single group
- Most applications not affected
 - For "Legacy" APIs, group is implied
 - "Legacy" drivers are Group 0
 - New APIs to expose group information
 - Applications that use or store per-processor information for the entire system must be modified

Details – > 64 LPs Code Impacts – Minimized

#define MAXIMUM_PROC_PER_GROUP 64 #define MAXIMUM_PROCESSORS MAXIMUM_PROC_PER_GROUP

// Examples of new APIs
GetMaxiumProcssorGroupCount(...)
GetMaxiumProcssorCount(...)

CreateRemoteThreadEx(...)

GetActiveProcessorGroupCount(...) GetCurrentProcessorNumberEx(...) GetLogicalProcessorInformationEx(...) GetMaxiumProcessorCount(...)

// and many more...

SQL on 256 LPs

video

Details – Lock "Removal" Terminology

What's a lock

- A spinlock is a locking primitive associate with global data structures - prevents multiple threads from simultaneously modifying important data
- Waiting threads "spin" doing nothing waiting for access to the lock

Contention

Threads being stalled waiting for their turn to access a lock

STOP

Details – Lock "Removal" Details

- What's changed?
 - Four key Kernel locks have been "removed"
 - Scheduler Dispatcher, Memory Manager PFN, Cache Manger VACB, and Object Manager Type
- How?
 - Decomposition into "smaller" locks
- Results?
 - Less contention, less waiting ⇒ better scalability
 - No detectable change for user applications

Details – Lock "Removal"

Scaling without the Dispatcher Lock

1.7x scaling going from 64 to 128 LPs

Details – Power Savings

What changed?

- Processor Power Management algorithms & settings
- Increased processor idle state usage
- Intelligent Tick Distribution, Tick Skipping, Timer Coalescing, and Core Parking
- New metering and budgeting features
- How?
 - Lots of tuning on diverse workloads (with Intel/AMD assistance and validation)
 - Refactoring of the OS & kernel to minimize idle activity
 - Support for onboard metering
- Results?
 - WS08R2 improves greatly from W2k³ Windows Server 2008 R2 2

Details – Power Saving OS Comparison – Out of the Box Settings

Details – Power Saving Power vs. Performance – R2 Power Plans

Details – Power Saving Balanced vs. High Performance

Core parking

Details – Virtualization Hyper-V Power

Details – Virtualization Scalability

WS08 (v1)	WS08 R2 (v2)
24	64
4:1	8:1
96	384
4	4
96	512
64GB	64GB
1TB	1TB
	WS08 (v1) 24 4:1 96 4 96 64GB 1TB

Details – Virtualization *Memory Mapping – Terminology*

- Memory Management Units (MMU)
- Guest Virtual Address (GVA)
- Guest Physical Address (GPA)
- System Physical Address (SPA)
- Optimization Shadow Page Tables

Details – Virtualization Hardware SLAT

What's new?

- Shadow Page Tables stored in hardware
- Second Level Address Translation (SLAT)
- How?
 - Support for hardware SLAT
 - Replaces Multiple Shadow Address Space (MSAS)
 - EPT on Intel, NPT on AMD
- Results?
 - Same performance with less overheard

Details – Virtualization Live Migration

What's new?

- VM moving between Hosts without noticeable interruption
- How?
 - Incremental copy and restore of VM
 - Quick Migration without the downtime
 - Clustered Shared Volumes (Centipede)
 - Required SAN for seamless VM movement between clusters

Details – Virtualization Live Migration

- Results?
 - Improved Reliability
 - Load balancing across VM Hosts
 - Migration times can be longer than Quick Migration
 - Down times are very short

Details – Virtualization Virtual Hard Drivers (VHD)

- What's changed?
 - A number of performance improvements
- How?
 - Rewritten VHD stack
- Results?
 - Random Write much improved
 - Over all considerably closer to native

Details – Virtualization Virtual Hard Drivers (VHD)

Higher is Better

Details – Footprint Terminology

Memory Working Set

- The amount of RAM the memory manager assigns to process or kernel memory type
- Shown in Task Manager

Memory Reference Set

- The amount of Working Set that is actively used by a process or the kernel
- Paged Pool
- Non-paged Pool

Details – Footprint

- What changed?
 - Memory usage
 - Disks usage
- How?
 - Demand start of Drivers and Services (UBPM)
 - Memory Manager changes
 - Targeted testing and analysis of usage
- Results
 - Memory
 - Better utilization
 - Smaller Reference Set
 - Reduced Non-paged pool memory usage Windows Server 2008 R2
 - Enterprise Full installation is now 2GB smaller on disk³⁶

Details – Footprint

Details – File Copy Changes

What changed?

- Reduced per-file network round trips
- Reduced L2 cache misses and CPU churn.
- Reduced spurious I/O activity on the system
- Greater Parallelism
- How?
 - Core copy engine optimizations in CopyFileEx and Shell
 - Kernel optimizations in Cache Manager and Memory Manager
 - Improved SMB2 request compounding Server 2008 R2

Details – File Copy Changes

Results

- Improvements in local file copy
- Faster WAN transfer for large file sets
- Robocopy now supports multithreaded copy
 - Multi-threaded copy ("/MT" switch) Improvement up to 8x on high-latency networks

Details – WAN Office File Open Better Together!

Performance Tuning

Windows Hardware Developer Central (WHDC)

http://www.microsoft.com/whdc

- PC Fundamentals
 - Performance Page
- Turning Guides
 - Freshly updated for R2

http://www.microsoft.com/whdc/system/sysperf/Perf_tun_srv-R2.mspx

Virtualization and Partitioning

Windows Server Performance Team Blog <u>http://blogs.technet.com/winserverperformance/</u>

Performance Tuning Performance Analyzer

- XPerf
 - Sampling based profiler
 - Built on top of the Event Tracing for Windows (ETW) infrastructure
- What it allows:
 - Driver delays analysis
 - CPU sampling analysis
 - Disk I/O analysis
 - Network analysis

http://msdn.microsoft.com/en-us/performance/cc752957.aspx

Performance Turning XPerfView

44

Summary

- R2 is more than a "patch" or "service pack"
- The most scalable release of Server
- Performance gains in a number of areas
- New features to address pain points
- Great today, ready for tomorrow

Additional Resources

- > 64 Logical Processors <u>http://code.msdn.microsoft.com/64plusLP</u>
- Channel 9 <u>http://channel9.msdn.com/tags/w2k8r2</u>
- Power savings and Management
 - Plug and Play Power Management <u>http://www.microsoft.com/whdc/system/pnppwr/default.mspx</u>
 - Power In, Dollars Out: How to Stem the Flow in the Data Center <u>http://www.microsoft.com/whdc/system/pnppwr/powermgmt/Svr_Pwr_ITA</u> <u>dmin.mspx</u>
- Windows Performance Analysis Developer Center: <u>http://msdn.microsoft.com/en-us/performance/default.aspx</u>

THANK YOU!

Microsoft TechNet